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Assumptions: Let G be a group with subgroup H.

Question: How can we relate H'(G, A) to H'(H, A) for any G-module A?

The above question makes sense because any G-action on A also induces an H-action so we can
talk about H'(H, A). We will use the fact that every G-module is naturally an H-module tacitly
throughout this talk.

In particular Z[G] has a natural G-module structure, so it makes sense to define the following
H-module:

Definition. Given an H-module A, we define
M§(A) = Hompy (Z[G], A).

Mg 18 certainly an H-module, but it is also a G-module. For o € G, we define a G-action on
M§ by o(¢(g)) = ¢(go) where g € Z|G]. To clear up notation, go is considered as an element of
Z|G].

With this definition in place, we can present our first result that suggests there is a connection
between H'(G,A) and H*(H, A).

Lemma. Let A be an H-module and M a G-module, then
Homg (M, M$(A)) = Hompy (M, A).
Proof. Given an H-morphism A : M — H, define the G-morphism by
m = (g — AMgm))

where, to clear up notation, gm means g acting on m.
In the other direction, given a G-morphism m — ¢,,, we define an H-morphism by m +—

Pm(1). O

Unsurprisingly, when we pass to cohomology we get an isomorphism.

Corollary (Shapiro’s Lemma). Given an H-module A, we have the following isomorphisms for all
1> 0:
H'(G,M{j(A)) = H'(H, A).

In the case of H = {1} (i.e., in the category of abelian groups), we obtain an immediate
corollary:

Corollary. H'(G, Mg}(A)) = {1} for all i > 0.

Proof (Corollary). A projective H-resolution of Zis 0 — Z — Z — 0 (because Z[H| = Z[{1}] = Z).
Thus, H(H, A) = 0 for i > 0, so the result follows O

We have kind of answered our original question, i.e. we can interpret group cohomology over H
and group cohomology over G (with a slightly different module). But, we really wanted to compare
cohomology for the same G-module A. To get to a place where we can compare cohomology in
such a way, we need to spend a little bit more time in the H = {1} case.



Definition. If H = {1}, we write MG (A) = MY(A) and call it the co-induced module associated
with A.

Here are some basic facts about the co-induced module:
e There is a natural injection A < M%(A) given by a +— (g — ga);

e If G is finite and A is an abelian group (using that {1}-module is an abelian group), a choice
of Z basis for Z|G] induces an isomorphism M%(A) = A ®7 MY(A) as abelian groups.

We will come back to the co-induced module later, but we now will introduce some maps on
cohomology.

Definition. Let A be a G-module. There is a G-morphism A — MIC{;(A) given by first considering
the isomorphism A = Homg(Z[G], A) then, second, considering the associated G-morphism as an
H-morphism. Thus, we have constructed a G-morphism A — Hompy (Z[G], A) = M$G(A). If we
take cohomology H'(G,-) we get induced abelian group morphisms H (G, A) — HZ(ME(A)) for all
i. It follows by Shapiro’s Lemma that we get an abelian group morphisms

res: H'(G,A) — H'(H, A)
for all i which we call the restriction map.

In the case of i = 0, res is just the usual inclusion A® — AH.
Now, if [G : H] is finite, we get an additional maps in the opposite direction of the restriction
maps

Definition. Assume that |G : H] is finite and let A be a G-module. For ¢ € Hompy(Z|G|, A) we
define a morphism ¢% € Homy (Z[G], A) = A as follows:
Let p1,...,pn be a system of left coset representatives for H in G. Then we define gbg via

$% () =Y _ pid(p; ).
j=1

(,0]-71:1: means pj*l is acting on x). Since ¢ is a H-morphism, gb% does not depend on choice of coset
representative.

So far, (;Sf[ is, a priori, only an H-morphism. To see gb% is a G-morphism, let o € G and notice
that o= tp; forms another system of left coset representatives. Therefore, we find that

o ijqﬁ(Pj_lx) =0 Zailpm((a*lp]‘)*lx) :ijqﬁ(pj—lgg;)
j=1 =

Jj=1

which tells us that ¢% € Homg(Z[G], A).
In short, ¢ — ¢% gives us a map Hompy(Z[G], A) — Homg(Z[G], A) = A. Using the same
process as above (taking cohomology then applying Shapiro’s Lemma), we get maps on cohomology:

cor : H'(H, A) — H'(G, A)
for all i. We call these abelian group morphisms the corestriction maps.

In the case of i = 0, cor is the morphism A — A% given by z +— > p;x where p; are the coset
representatives of H in G.



Proposition. Let [G : H] = n be finite. Then corores : H(G,A) — H'(G,A) is given by
multiplication by n for all 3.

Proof. Let ¢ € Homg(Z[G], A) and = € Z|G]. The image corresponding to
corores : Homg(Z[G], A) — Homg(Z[G], A)

is given by
oG (x) = pio(p; ') =Y pip; ' (x) = ne(x)

(because ¢ is a G-morphism - not just an H-morphism). It follows that the morpism induced on
cohomology is also multiplication by n. O

Corollary. Let G be a finite group of order n. Then for all i > 0, every element of H (G, A) has
order dividing n.

Proof. Take H = {1} in the above proposition. O

Definition. Assume that H is a normal subgroup of G, and let A be a G-module. Notice that A"
is stable under action of G (i.e. foro € G and a € A", ca € A"). Hence, A" has an induced
structure of a G/H-module.

Now, take a projective resolution P, of Z as a trivial G-module and a projective resolution
Qe of Z as a trivial G/H-module. Each Q; has the structure of a G-module via the projection
GtoG/H so by the Horseshoe Lemma, we get a G-module complex morphism Pe — Qe. It follows
that we also get G-module complex morphisms Homg(Q., A™) — Homg(P,, A®). Notice that
Homg(Q., A7) = Homg/H(Q.,AH) by the comment above, so we actually have abelian group
morphism Homg) g (Qe, AHY — Homg (P,, A™). By taking cohomology, we get maps

HY(G/H, A") - HY(G, AT)

for all i. Using usual cohomology arguments, these morphisms do not depend on the choice of
projective resolution.

On the other hand, we have a natural G-module morphism A" — A which gives us an abelian
group morphism on cohomology: H (G, A") — H' (G, A).

We define the inflation maps to be the composition

inf : H(G/H, A" — HY(G, A") = HY(G, A)
for all i.
Lemma. Let A be a G-module and H a normal subgroup of G. Then
ME (A = MOTH(A)

and
HY(H,M®(A)) =0

for all i > 0.



Proof. The first isomorphism comes from the following isomorphism of abelian groups
Hom(Z[G], A) = Hom(Z[G/H], A).

With regards to the second isomorphism, notice that Z[G] is a free Z[H]-module so MY (A) =
@©M*H(A). However, using a general fact about cohomology,

H'(H,M®(A)) = H'(H,&M" (A)) = @H'(H,M" (A))
We notices earlier that H'(H, M (A)) = {1}, so the result follows.
Theorem. Let A be a G-module and H a normal subgroup of G. Then we have an exact sequence:
0— HYG/H, A"y ™, gY@, A) = qgY(H, A)%H T
— H2(G/H, A") 25 H2(G, A).
We call T the transgression map.

Proof. omitted. O

Corollary. In the situation above, let i > 1 and assume that HI(H, A) are trivial for 1 < j <i—1.
Then there is an exact sequence:

0 — HY(G/H, ATy 25 (G, A) 25 Hi(H, A)S/H 22
— BTG/ H, ATy 2 gt (g, A).
We also call T; 4 transgression maps.

Proof. Dimension shift.
O

REPRESENTATIVES OF TRANSGRESSION MAP AND INFLATION MAP IN
TERMS OF COCYCLES
As an interesting aside, we can describe inflations in terms of group extensions.

Example: Given a group G and G-module A, we shall consider group extensions 1 - A —
E — G — 0 where E is a group (not necessarily abelian). There is a bijection between 2-
cocycles in Z?(G, A) and extensions of the above form (upto usual isomorphism of short exact
sequences). You can read about this in Weibel Section 6.6. Given an extension 1 - A — F —
G — 0, we set ¢(E) to be the image of the 2-cocycle in H*(G, A). (An interesting fact is that
c¢(E) =0 if, and only if, E is the semidirect product of A and G).

Given a morphism ¢ : A — B of G-modules, the natural map on cohomology ¢, :
H?*(G, A) — H?*(G, B) induces the following on extensions. If 1 - A % E — G — 0 then we
get an extension 1 - B — F — G — 0 where F = B x E/(¢(a), (i(a)) " )aca We then get
P« (c(E)) = c(«(E))-

For the inflation map, we get something similar, so let 0 - A — E 5 G/H — 1 be
an extension corresponding to ¢(E) € H?(G/H, A). Then, inf(c(E)) = c¢(p*(E)) where p* is
defined as E x G/(e, g) that satisfy m(e) = p(g).




